Механизация крыла самолета. Описание. Фото. Видео. Механизация крыла самолета: описание, принцип работы и устройство Что находится на крыле самолета

Предкрылки

Система управления предкрылками двухканальная. Управляется двумя независимыми вычислителями-контроллерами (МАСЕ). Левый и правый предкрылок разделены на 4 секции каждый. Каждая секция подвешена на двух рельсах. Перемещение предкрылков обеспечивается электроприводом (PDU). Привод расположен в центроплане, по оси симметрии самолёта и представляет собой блок из 2-х э/моторов, соединённых между собой редуктором. Передача крутящего момента от привода осуществляется механической трансмиссией.

Трансмиссия начинается в ЦП и проходит по всему размаху предкрылков вдоль переднего лонжерона крыла. Вся трансмиссия закрывается съёмными лючками-лентами на нижней панели крыла, крепёж — на винтах. Состоит из промежуточных карданных валов (по 14 шт. в каждой консоли) и редукторов:

  • по два конических редуктора в ЦП с правого и левого борта — для изменения направления трансмиссии на участке от э/привода до бортовой нервюры;
  • по одному согласующему редуктору для параллельного смещения валов в зоне пилона двигателя.

Валы передают вращение на приводы с планетарной передачей (ППП, по 8 шт. в каждой консоли). ППП вращают шестерни, вращение которых перемещает зубчатые рейки на рельсах предкрылков. При уборке предкрылков, рельсы задвигаются в специальные углубления (стаканы) в переднем лонжероне, т.е. в кессон крыла. На конце каждого рельса крепится упор. Выход любого рельса на упор, приведёт к превышению заданной величины крутящего момента и срабатыванию фрикционной муфты в соответствующем ППП. Это вызовет её стопорение и выскакивание мех. сигнализатора (солдатика) на данном приводе.

Кроме этого, трансмиссия включает в себя по тормозному механизму и по сдвоенному блоку (для 2-х каналов) датчиков рассогласования, расположенных на самом конце трансмиссии, в каждой консоли крыла. Сигналы сравниваются между датчиками рассогласования левой и правой консолей. Фрикционный тормоз служит для блокировки вращения трансмиссии:

  • при любом отказе, способном привести к несимметричному положению предкрылков;
  • при рассогласовании заданного и текущего положений предкрылков;
  • при отказе двух двигателей привода или 2 вычислителей МАСЕ.

При отказе одного э/двигателя или МАСЕ система продолжит работать с уменьшенной в два раза скоростью перемещения.

Закрылки

Закрылком называют несущую поверхность с профилем, образованным из хвостовой части крыла, при отклонения вниз, обеспечивается изменение кривизны профиля и увеличение площади крыла, а также «щелевой эффект», т.е. смещение точки отрыва пограничного слоя к задней кромке. Углы отклонения всех закрылков имеют критическую величину, после которой дальнейшее отклонение сопровождается не приращиванием, а уменьшением подъёмной силы. При посадке угол отклонения закрылков больше, нежели при взлёте.
На крыле самолёта SSJ-100 установлены внутренний и внешний закрылки, однощелевые, однозвенные, каждый из них отклоняется во взлетное и посадочное положение с помощью двух винтовых механизмов.
Внешний закрылок расположен в хвостовой части крыла между внутренним закрылком и элероном. Закрылок установлен на каретках, перемещающихся по двум рельсам, размещенных в балках, закрепленных на крыле.


Внутренний закрылок располагается за балкой шасси хвостовой части крыла, между бортом фюзеляжа и изломом стреловидности крыла, и установлен на каретках, перемещающихся по двум рельсам: один рельс расположен на борту фюзеляжа, другой - на балке, установленной на крыле.


Система управления закрылками устроена также как и у предкрылков. Разница состоит в наличии большего числа редукторов и использовании шарико-винтовых механизмов (ШВМ) вместо зубчатых реек.

При работе СДУ в режиме «Normal Mode» положение предкрылков/закрылков задаётся рукояткой FLAPS в кабине + автоматически корректируется по V инд (от вычислителей СДУ верхнего уровня). Это позволяет реализовать ступенчатую уборку механизации при превышении соответствующего значения V fe , или её выпуск при потере самолётом скорости. В случае перехода СДУ в режим «Direct» положение механизации управляется только рукояткой «FLAPS».

Принудительный выпуск механизации крыла производится только из полётной конфигурации FL0 в положение FL1, при потере скорости ниже 200 kt (рукоятка «FLAPS» находится в положении «0»).

При установке рукоятки в любое положение, отличное от «0», (например «FULL»), по мере торможения самолёта, механизация будет последовательно выпускаться в каждое из своих положений - «1», «2», «3», «FULL», при уменьшения скорости ниже V fe -3kt для соответствующей конфигурации.

Для конфигурации FL1 скоростное ограничение намного выше указанного значения и составляет V fe = 250 kt (463 км/ч). С другой стороны, расхождение в показаниях СВС, вызывает переход СДУ в упрощённый режим «Degrade Mode», а отказ всех трёх СВС — в минимальный режим «Direct Mode». При этом функции автоматических ограничителей отключаются.

В режиме «Direct» в «живых» остаётся только функция демпфирования по угловым скоростям, а сигналы от БРУ и педалей напрямую поступают на контроллеры управления приводами (АСЕ), без каких-бы то ни было «наворотов» (на Су-27 подобный режим СДУ называется «жёсткая связь»). Управление интерцепторами и тормозными щитками, в этой ситуации, обеспечивается напрямую — только от рукояток «Speed Brake » и «Flaps». Безопасную скорость ГП, в случае отказа всех СВС, можно выдерживать по показаниям угла атаки, или угла тангажа от ИНС.

По материалам Engineer_2010

Стоит ли упоминать, что вся система разработана нашими инженерами фирмы Гражданские Самолеты Сухого?

Механизация крыла самолёта SSJ100 | Предкрылки | Фото: интернет

Предкрылок убран | Предкрылок выпущен

Механизация крыла самолёта SSJ100 | Закрылки | Фото: интернет

Закрылок убран | Закрылок выпущен, посадочная конфигурация

Обсуждение

Вопрос: предположим, что предкрылки не вышли совсем… Ну заклинило пресловутый подшипник сразу. Почему я не могу выпустить закрылки при таком раскладе?

Инженер2010: В принципе, это возможно, но только в пределах «соседней» конфигурации. При установке рукоятки управления механизацией (FLAPS) в позицию «1», в случае заклинивания предкрылков в убранном состоянии (0 град.) закрылки выпустятся в первое фиксированное положение — 3 град. Но не дальше, так как автоматика контролирует положение закрылков относительно предкрылков.

Надо уточнить, что положению рукоятки «1» соответствуют две разных конфигурации, «FL 1» и «FL 1 + F»:

  • в полёте, предкрылки и закрылки выпустятся в положение «FL 1» (18 град. / 3 град.);
  • на земле, при постановке рукоятки в положение «1» они выпустятся в положение «FL 1 + F» (18 /9).

При разгоне самолёта до V пр > 200 kt, механизация крыла автоматически перейдёт в конфигурацию «FL 1», то есть произойдёт «подуборка» закрылков.

Второй момент — всем остальным взлётным и посадочным конфигурациям самолёта (положения рукоятки «2», «3» и «FULL») соответствует одно положение предкрылков — 24 град. и три разных положения закрылков — 16, 25 и 36 град. соответственно.

APZ: а как при этом меняется угол установки стабилизатора?
sys: Думаете РВ при необходимости не хватит?

Переставной стабилизатор на SSJ выполняет роль триммера в продольном канале. На земле или при работе СДУ в минимальном режиме «Direct mode» стабилизатор надо устанавливать вручную — при помощи кнюппеля. А в полёте с СДУ работающей в режиме «Normal» самолёт балансируется автоматически — стабилизатор самостоятельно перемещается в новое положение при выпуске или уборке механизации, шасси, изменении центровки или режима двигателя,. Поэтому самолёт сбалансирован в полёте при нейтральном положении БРУ, а руль высоты (РВ) находится в околонулевом положении. Конечно, всякие резкие возмущения первоначально парируются отклонением РВ, но после этого в работу включается механизм перемещения стабилизатора (МПС), а РВ «списывается» в нейтральное положение. В итоге — РВ на всех режимах обладает достаточным запасом для маневрирования по тангажу.

Механизация крыла является неотъемлемой частью крыльев современных самолетов. К ней относятся устройства, позволяющие изменять аэродинамические характеристики крыла на отдельных этапах полёта (рис. 3.8).

Различают два вида механизации по выполняемым функциям:

  • · для улучшения взлетно-посадочных характеристик (закрылки и предкрылки);
  • · для управления в полете (спойлеры в режиме гасителей подъемной силы и в элеронном режиме).

Механизация крыла самолета:

1 - закрылки; 2 - предкрылки; 3 - спойлеры

Простой закрылок представляет собой отклоняющийся вниз до 45° участок хвостовой части крыла. Для повышения эффективности закрылка он делается щелевым. При отклонении выдвижного закрылка между его носком и крылом образуется профилированная щель. На современных самолетах используются двух- или трехщелевые закрылки.

Предкрылки представляют собой часть носка крыла у передней кромки, которая отклоняется вниз на угол до 25° и выдвигается вперед, образуя с крылом профилированную щель. Так же, как и закрылки, предкрылки уменьшают взлетно-посадочные скорости самолета, а самое главное - увеличивают критический угол атаки.

К средствам механизации относятся спойлеры (интерцепторы), используемые как тормозные щитки, воздушные тормоза, гасители подъемной силы, элементы управления по крену и т.д. При отклонении спойлеров вверх нарушается обтекание крыла, что приводит к уменьшению коэффициента подъемной силы. С помощью спойлеров можно изменять вертикальную скорость снижения, уменьшать длину пробега при посадке за счет более эффективного торможения колес шасси и повышать эффективность управления по крену.

Крыло современных самолетов имеет механизацию передней и задней частей. Элементы механизации передней части крыла обеспечивают ликвидацию срыва потока на крыле при больших углах атаки. Их работа синхронно связана с работой механизации задней части -- закрылков Наиболее эффективными и распространенными являются щелевые выдвижные закрылки, увеличивающие кривизну профиля крыла и его площадь. Щитки могут устанавливаться в носовой и задней частях крыла. Их конструкция проще, чем у закрылков, но эффективность меньше.

Элементы аэродинамической системы управления самолета: 1 -- носовые щитки; 2 -- закрылки; 3 -- цельноповоротный киль; 4 -- дифференциальный стабилизатор; 5 -- интерцепторы

Для уменьшения усилий на рычагах управления все современные самолеты имеют в системе управления бустеры -- рулевые приводы. В 70-х годах появляется электродистанционная система управления (ЭДСУ). На самолетах, оснащенных такой системой, отсутствует (или является резервной) механическая проводка управления, а сигналы управления передаются от рычагов к рулевым машинкам по электрокоммуникациям ЭДСУ имеет меньшую массу и позволяет увеличить надежность системы управления путем резервирования линии связи. В этой системе можно использовать компьютеры и быстродействующие приводы для управления статически неустойчивыми самолетами, а также снижать нагрузки при маневрировании или в полете в турбулентной атмосфере.

На дозвуковых самолетах для уменьшения нагрузок действующих на органы управления, применяются сервокомпенсаторы и серворули -- небольшие поверхности связанные в первом случае с рулями, во втором -- с рычагами управления. С их помощью облегчается или производится отклонение рулей.

Строение крыла

Крыло в авиационной технике - поверхность для создания подъёмной силы.

Части крыла самолета

В общем случае крыло самолета состоит из центропланной части, консолей(левой и правой) и механизации крыла.

Основные части механизации крыла

1 - законцовка крыла

2 - концевой элерон

3 - корневой элерон

4 - обтекатели механизма привода закрылков

5 - предкрылок

6 - предкрылок

7 - корневой трехщелевой закрылок

8 - внешний трехщелевой закрылок

9 - интерцептор

10 - интерцептор/воздушный тормоз

Элероны

Элероны- аэродинамические органы управления, симметрично расположенные на задней кромке консолей крыла у самолётов нормальной схемы и самолётов схемы «утка». Элероны предназначены в первую очередь для управления углом крена самолёта, при этом элероны отклоняются дифференциально (отдельно друг от друга), то есть, например, для крена самолёта вправо правый элерон поворачивается вверх, а левый - вниз; и наоборот. Принцип действия элеронов состоит в том, что у части крыла, расположенной перед элероном, поднятым вверх подъёмная сила уменьшается, а у части крыла перед опущенным элероном подъёмная сила увеличивается; создаётся момент силы, изменяющий скорость вращения самолёта вокруг оси, близкой к продольной оси самолёта.

Один из побочных эффектов действия элеронов - некоторый момент рысканья в противоположном направлении. Другими словами, при желании повернуть направо и использовании элеронов для создания крена вправо, самолёт во время увеличения крена может немного повести по рысканью влево. Эффект связан с появлением разницы в лобовом сопротивлении между правой и левой консолью крыла, обусловленной изменением подъёмной силы при отклонении элеронов. Та консоль крыла, у которой элерон отклонён вниз, обладает большим коэффициентом лобового сопротивления, чем другая консоль крыла. В современных системах управления самолётом данный побочный эффект минимизируют различными способами. Например, для создания крена элероны отклоняют также в противоположном направлении, но на разные углы

Работа элеронов при управлении креном. Если продолжать держать элероны отклонёнными в крайнем положении, тогда достаточно манёвренный самолёт начнёт непрерывно вращаться вокруг своей продольной оси.

Впервые элероны появились на моноплане, построенном новозеландским изобретателем Ричардом Перси в 1902, однако самолёт совершал только очень короткие и неустойчивые полёты. Первый самолёт, который совершил полностью управляемый полёт с использованием элеронов, был самолёт 14 Bis, созданный Альберто Сантос-Дюмоном. Ранее элероны заменяла деформация крыла, разработанная братьями Райт.

Механиза ́ ция крыла ́

Механиза ́ ция крыла ́ - совокупность устройств на крыле летательного аппарата, предназначенных для регулирования его несущих свойств. Механизация включает в себя закрылки, предкрылки, интерцепторы, спойлеры, флапероны, активные системы управления пограничным слоем и т.

Закрылки

Закрылки - отклоняемые поверхности, симметрично расположенные на задней кромке крыла. Закрылки в убранном состоянии являются продолжением поверхности крыла, тогда как в выпущенном состоянии могут отходить от него с образованием щелей. Используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полётe на малых скоростях.

Принцип работы закрылков заключается в том, что при их выпуске увеличивается кривизна профиля и (в случае выдвижных закрылков, которые также называют закрылками Фаулера) площадь поверхности крыла, следовательно, увеличивается и подъёмная сила. Возросшая подъёмная сила позволяет летательным аппаратам лететь без сваливания при меньшей скорости. Таким образом, выпуск закрылков является эффективным способом снизить взлётную и посадочную скорости.

Второе следствие выпуска закрылков - это увеличение аэродинамического сопротивления. Если при посадке возросшее лобовое сопротивление способствует торможению самолета, то при взлёте дополнительное лобовое сопротивление отнимает часть тяги двигателей. Поэтому на взлёте закрылки выпускаются всегда на меньший угол, нежели при посадке.

Третье следствие выпуска закрылков - продольная перебалансировка самолёта из-за возникновения дополнительного продольного момента. Это усложняет управление самолётом (на многих современных самолётах пикирующий момент при выпуске закрылков компенсируется перестановкой стабилизатора на некоторый отрицательный угол). Закрылки, образующие при выпуске профилированные щели, называют щелевыми. Закрылки могут состоять из нескольких секций, образуя несколько щелей (как правило, от одной до трёх).К примеру, на отечественном Ту-154М применяются двухщелевые закрылки, а на Ту-154Б - трёхщелевые. Наличие щели позволяет потоку перетекать из области повышенного давления (нижняя поверхность крыла) в область пониженного давления (верхняя поверхность крыла). Щели спрофилированы так, чтобы вытекающая из них струя была направлена по касательной к верхней поверхности, а сечение щели должно плавно сужаться для увеличения скорости потока. Пройдя через щель, струя с высокой энергией взаимодействует с «вялым» пограничным слоем и препятствует образованию завихрений и отрыву потока. Это мероприятие и позволяет «отодвинуть» срыв потока на верхней поверхности крыла на бо ́ льшие углы атаки и бо ́ льшие значения подъемной силы.




Флапероны

Флапероны, или «зависающие элероны» - элероны, которые могут выполнять также функцию закрылков при их синфазном отклонении вниз. Широко применяются в сверхлёгких самолётах и радиоуправляемых авиамоделях при полётах на малых скоростях, а также на взлёте и посадке. Иногда применяется на более тяжелых самолётах (например, Су-27). Основное достоинство флаперонов - это простота реализации на базе уже имеющихся элеронов и сервоприводов.

Предкрылки

Предкрылки - отклоняемые поверхности, установленные на передней кромке крыла. При отклонении образуют щель, аналогичную таковой у щелевых закрылков. Предкрылки, не образующие щели, называются отклоняемыми носками. Как правило, предкрылки автоматически отклоняются одновременно с закрылками, но могут и управляться независимо.

В целом, эффект от выпуска как закрылков, так и предкрылков сводится к увеличению кривизны профиля крыла, что позволяет увеличить подъёмную силу. Основная роль предкрылков заключается в увеличении допустимого угла атаки, то есть срыв потока с верхней поверхности крыла происходит при бо ́ льшем угле атаки.

Помимо простых, существуют так называемые адаптивные предкрылки. Адаптивные предкрылки автоматически отклоняются для обеспечения оптимальных аэродинамических характеристик крыла в течение всего полета. Также обеспечивается управляемость по крену при больших углах атаки с помощью асинхронного управления адаптивными предкрылками.


Интерцепторы

Интерцепторы (спойлеры) - отклоняемые или выпускаемые в поток тормозные консоли на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъёмную силу. Поэтому интерцепторы также называют гасителями подъемной силы.

В зависимости от площади поверхности консоли, расположения её на крыле и т. д. интерцепторы делят на: Внешние элерон-интерцепторы

Элерон-интерцепторы представляют собой дополнение к элеронам и используются в основном для управления по крену. Они отклоняются несимметрично. Например, на Ту-154 при отклонении левого элерона вверх на угол до 20°, элерон-интерцептор на этой же консоли автоматически отклоняется вверх на угол до 45°. В результате подъёмная сила на левой консоли крыла уменьшается, и самолёт кренится влево.

У некоторых самолетов, например, МиГ-23, интерцепторы (наряду с дифференциально отклоняемым стабилизатором) являются главным органом управления по крену.

Спойлеры

Спойлеры (интерцепторы) - это непосредственно воздушные тормоза.

Симметричное задействование интерцепторов на обоих консолях крыла приводит к резкому уменьшению подъемной силы и торможению самолёта. После выпуска «воздушных тормозов» самолёт балансируется на бо ́ льшем угле атаки, начинает тормозиться за счет возросшего сопротивления и плавно снижаться.

Интерцепторы также активно используются для гашения подъемной силы после приземления или при прерванном взлёте и для увеличения сопротивления. Необходимо отметить, что они не столько гасят скорость непосредственно, сколько снижают подъёмную силу крыла, что приводит к увеличению нагрузки на колеса и улучшению сцепления колёс с поверхностью. Благодаря этому, после выпуска внутренних интерцепторов можно переходить к торможению с помощью колёс.

Термин «механизация крыла» на английском звучит как «high lift devices», что в дословном переводе – устройства для повышения подъемной силы. Именно это и является основным предназначением механизации крыла, а где находятся плоскости, относящиеся к механизации крыла и каким образом увеличивают подъемную силу, а также зачем это нужно - расскажет эта статья.

Механизация крыла – перечень устройств, которые устанавливаются на крыло самолета для изменения его характеристик на протяжении разных стадий полета. Основное предназначение крыла самолета – создание подъемной силы. Этот процесс зависит от нескольких параметров – скорости движения самолета, плотности воздуха, площади крыла и его коэффициента подъемной силы.

Механизация крыла непосредственно влияет на площадь крыла и на его коэффициент подъемной силы, а также косвенно на его скорость. Коэффициент подъемной силы зависит от кривизны крыла и его толщины. Соответственно можно сделать вывод, что механизация крыла кроме площади крыла еще и увеличивает его кривизну и толщину профиля.


На самом деле не совсем так, ведь увеличение толщины профиля связано с большими технологическими сложностями, не столь эффективно и больше ведет к увеличению лобового сопротивления, потому этот пункт необходимо отбросить, соответственно механизация крыла увеличивает его площадь и кривизну. Делается это с помощью подвижных частей (плоскостей), расположенных в определенных точках крыла. По месторасположению и функциям, механизация крыла делится на закрылки, предкрылки и спойлеры (интерсепторы).

Закрылки самолета. Основные виды.

Закрылки – первая из придуманных разновидностей механизации крыла, они же и наиболее эффективны. Они широко применялись еще до Второй Мировой войны, а на ее протяжении и после их конструкция была доработана и, также, были изобретены новые виды закрылок. Основными характеристиками, которые указывают на то, что это закрылок действительно является им – его расположение и манипуляции, которые с ним происходят. Закрылки всегда находятся на задней кромке крыла и всегда опускаются вниз, и, к тому же, могут выдвигаться назад. При опускании закрылка увеличивается кривизна крыла, при его выдвижении – площадь. А раз подъемная сила крыла прямо пропорциональна его площади и коэффициенту подъемной силы, то если обе величины увеличиваются, закрылок выполняет свою функцию наиболее эффективно. По своему устройству и манипуляциям закрылки делятся на:

  • простые закрылки (самый первый и самый простой вид закрылок)
  • щитовые закрылки
  • щелевые закрылки
  • закрылки Фаулера (наиболее эффективный и наиболее широко применяемый в гражданской авиации вид закрылок)

Каким образом функционируют все вышеперечисленные закрылки показано на схеме. Простой закрылок, как видно из схемы, просто отклоняемая вниз задняя кромка крыла. Таким образом, кривизна крыла увеличивается, однако область низкого давления над крылом уменьшается, потому простые закрылки менее эффективны, чем щитовые, верхняя кромка которых не отклоняется и область низкого давления не теряет в размерах.

Щелевой закрылок получил свое название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока (процесс, во время которого величина подъемной силы резко падает), придавая ему дополнительную энергию.

Закрылок Фоулера выдвигается назад и вниз, чем увеличивает и площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100%.

Предкрылки. Основные функции.

Предкрылки – отклоняемые поверхности на передней кромке крыла. По своему строению и функциям они схожи с закрылками Фаулера – отклоняются вперед и вниз, увеличивая кривизну и немного площадь, образуют щель, для прохода воздушного потока к верхней кромке крыла, чем способствуют увеличению подъемной силы. Предкрылки, просто отклоняемые вниз, которые не создают щели называются отклоняемыми носками и только увеличивают кривизну крыла.

Спойлеры и их задачи.

Спойлеры. Перед рассмотрением спойлеров, следует заметить, что при создании дополнительной подъемной силы всеми вышеперечисленными устройствами создается дополнительное лобовое сопротивление, что ведет к понижению скорости. Но это происходит как следствие повышения подъемной силы, в то время как задача спойлеров – конкретно значительное повышение лобового сопротивления и прижимание самолета к земле после касания. Соответственно это единственное устройство механизации крыла, которое находится на верхней его поверхности и отклоняется вверх, чем и создается прижимная сила.

Закры́лок - профилированная отклоняемая поверхность, симметрично расположенная на задней кромке крыла, элемент механизации крыла . Закрылки в убранном состоянии являются продолжением поверхности крыла, тогда как в выпущенном состоянии могут отходить от него с образованием щелей. Используются для улучшения несущей способности крыла во время взлёта, набора высоты, снижения и посадки, а также при полёте на малых скоростях. Существует большое число типов конструкции закрылков.

Принцип работы закрылков заключается в том, что при их выпуске увеличивается кривизна (Сy) профиля и (в случае выдвижных закрылков , которые также называют закрылками Фаулера ) площадь поверхности крыла (S), следовательно, увеличивается и несущая способность крыла. Возросшая несущая способность крыла позволяет летательным аппаратам лететь без сваливания при меньшей скорости. Таким образом, выпуск закрылков является эффективным способом снизить взлётную и посадочную скорости. Второе следствие выпуска закрылков - увеличение аэродинамического сопротивления . Если при посадке возросшее лобовое сопротивление способствует торможению самолёта, то при взлёте дополнительное лобовое сопротивление отнимает часть тяги двигателей. Поэтому на взлёте закрылки выпускаются, как правило, на меньший угол, нежели при посадке. Третье следствие выпуска закрылков - продольная перебалансировка самолёта из-за возникновения дополнительного продольного момента. Это усложняет управление самолётом (на многих современных самолётах пикирующий момент при выпуске закрылков компенсируется перестановкой стабилизатора на некоторый отрицательный угол, либо отклонением цельноповоротного стабилизатора). Закрылки, образующие при выпуске профилированные щели, называют щелевыми. Закрылки могут состоять из нескольких секций, образуя несколько щелей (как правило, от одной до трёх).

На современных самолётах привод закрылков - это часто единый электро- или гидромотор, обычно двухканальный (сдублированный), который посредством валов передаёт вращательный момент на винтовой механизм перемещения закрылка, а сами закрылки двигаются по продольным направляющим (рельсам). В трансмиссии закрылков установлено несколько датчиков, которые отслеживают угловое положение правых и левых закрылков, а также их рассогласование между собой, при превышении порога которого автоматика блокирует их дальнейшее перемещение, а в ряде случаев и принудительно синхронизирует ("дотягивает"). Датчики крайних положений останавливают закрылки, не позволяя им доходить до механических упоров при уборке и выпуске, что снижает механическую нагрузку на трансмиссию. Кроме этого, могут применяться фрикционные муфты, срабатывающие при превышении заданного усилия (например, при заклинивании трансмиссии). Дополнительно между закрылками может быть установлен вал синхронизации. Рукоятка управления закрылками в кабине обычно позволяет выпускать закрылки на любой угол (предусмотренный конструкцией), но часто в механизме рукоятки сделаны механические фиксаторы, для основных рабочих положений закрылков (обычно для убранного полётного положения, промежуточного взлётного и полного посадочного).

На нескольких типах отечественных самолётов с гидроприводом закрылков применяется унифицированная система СПЗ (в различных вариантах), с двухканальным гидромотором (рулевым приводом типа РП-60).

Типы закрылков

По своему устройству и манипуляциям закрылки делятся на:

  • Простой (поворотный) закрылок . Самый простой вид закрылков. Увеличивает подъёмную силу за счёт увеличения кривизны профиля. Это просто отклоняемая вниз задняя кромка крыла. При этом увеличивается давление на нижней поверхности крыла. Однако область низкого давления над крылом уменьшается, поэтому простые закрылки менее эффективны, чем щитовые
  • Щитовой закрылок . Может быть простыми и выдвижными. Простые щитки - управляемая поверхность, которая в убранном положении плотно прилегает к задней нижней поверхности крыла. При отклонении такого щитка между ним и верхней поверхностью крыла образуется зона некоторого разрежения. Поэтому верхний пограничный слой в эту зону как бы отсасывается. Это затягивает его отрыв на больших углах. При этом увеличивается скорость потока над крылом. Кроме того при отклонении щитка увеличивается кривизна профиля. Снизу происходит дополнительное торможение потока и увеличение давления. Общая подъёмная сила растёт. Это позволяет самолёту лететь с малой скоростью. Выдвижной щиток не только отклоняется вниз, но еще и выдвигается назад. Эффективность такого щитка выше, потому что зона повышенного давления под крылом увеличивается, и условия отсоса пограничного слоя сверху улучшаются. При использовании щитков подъёмная сила на посадочном режиме может вырасти до 60 %. Щитки применяются в основном на лёгких самолётах.
  • Щелевой закрылок . Получил своё название по причине образуемой им щели после отклонения. Эта щель позволяет проходить воздушной струе к области низкого давления и направлена она таким образом, чтобы предотвращать срыв потока, придавая ему дополнительную энергию. Щель в таком закрылке выполнена сужающейся и воздух, проходя через неё, разгоняется. Далее он, взаимодействуя с пограничным слоем, разгоняет и его, препятствуя его отрыву и увеличивая подъёмную силу. Таких щелей на закрылках современных самолётов бывает от одной до трёх и общее увеличение подъёмной силы при их применении достигает 90 %.
  • Элерон-закрылок (иначе - зависающий элерон или флаперон) . Подвижная поверхность на задней кромке крыла, в полёте выполняющая роль элерона и служащая для управления по крену, т. е. элерон-закрылки на левой и правой плоскости отклоняются дифференциально. При взлёте/посадке элерон-закрылки на обоих плоскостях крыла отклоняются синхронно вниз, увеличивая подъёмную силу крыла. Конструктивно различают элерон-закрылки, которые в режиме закрылков отрабатывают некоторый фиксированный угол, либо элерон-закрылки, которые после синхронного отклонения продолжают работать дифференциально для управления креном. В целом элерон-закрылки менее эффективны, чем щелевые, и применяются вынужденно, из-за технической невозможности установки самостоятельных закрылков (например, на лёгких самолётах) или недостаточного места на крыле (Су-27).
  • Закрылок Фаулера - выдвижной закрылок. Выдвигается назад и вниз, чем увеличивает площадь и кривизну крыла. Как правило, он сконструирован таким образом, чтобы при его выдвижении еще и создавалась щель, или две, или даже три. Соответственно он выполняет свою функцию наиболее эффективно и может давать прирост в подъемной силе до 100 %.
  • Закрылок Юнкерса . Это разновидность щелевых закрылков, внешняя секция которых используется в качестве элеронов для управления креном, а две внутренние секции играют роль закрылков. Применялся в конструкции механизации крыла немецкого штурмовика Junkers Ju 87 .
  • Закрылок Гоуджа . Служит для улучшения характеристик на посадке, в частности, для снижения посадочной скорости . В закрылках Гоуджа вместе с увеличением вогнутости увеличивается площадь крыла . Это даёт возможность уменьшить взлётную дистанцию и увеличить подъёмную силу . Такой вид закрылков успешно применялся на таких самолётах как Short Sunderland и Short Stirling . Изобрёл закрылок в 1936 году английский инженер сэр Артур Гоудж из компании Short Brothers .
  • Закрылок Юнгмана . Использовался в конструкции британского палубного истребителя «Firefly» . В выпущенном положении значительно увеличивали площадь крыла и подъёмную силу. Их должны были использовать не только при взлёте и посадке, но и в полёте.
  • Закрылок со сдувом пограничного слоя . Закрылок, оборудованный системой управления пограничным слоем. Система сдува пограничного слоя с закрылков предназначена для улучшения посадочных характеристик самолёта. Суть управления пограничным слоем заключается в обеспечении безотрывного обтекания крыла в достаточно большом диапазоне углов атаки за счёт увеличения энергии пограничного слоя. Пограничный слой возникает в результате вязкого трения воздушного потока на обтекаемых поверхностях самолёта, причем скорость потока у обшивки резко падает до нуля. Воздействие на пограничный слой призвано ослабить или предотвратить срыва потока на обтекаемой поверхности, сохранить ламинарное течение .
  • Реактивный закрылок . Представляет собой плоский поток воздуха, вытекающего с большой скоростью через заднюю кромку под углом к нижней поверхности крыла. За счёт реактивного закрылка увеличивается эффективная площадь крыла, изменяется характер обтекания профиля , за счёт импульса вытекающей струи создаётся вертикальная составляющая силы, разгружающая крыло. Применение реактивного закрылка позволяет получить большое значение коэффициента подъёмной силы, однако при этом требуется существенно больший коэффициент